Small Business Innovation Research/Small Business Tech Transfer

Numerical Algorithms for Steady and Unsteady Multi-Disciplinary Simulation of Flight Vehicles, Phase II

Completed Technology Project (2005 - 2016)

Project Introduction

Industry is driven by the cost of man-power and time to market, and is still awaiting a versatile and reliable multi-disciplinary analysis code. The proposed JFLO software suite addresses many aspects that are still not totally resolved in current state-of- the-art CFD. It will enable optimal designs as well as the multi-disciplinary application of CFD for digital flight. The key elements of JFLO are: ease of use; broad analysis capability for 3D steady and unsteady applications for the entire range of speeds for low Mach to supersonic, high-resolution mesh-blind solution algorithms and CAD-blind surface reconstruction, mesh-and user-independent results via CAD-respecting mesh adaptation, fast solutions via advanced convergence acceleration techniques, and above all reliability and high accuracy. It weaves together technologies that have been recognized in their individual right: optimal control design, coupled CFD and CSD and automatic mesh optimization. Here they are brought together in a single package for the first time.

Primary U.S. Work Locations and Key Partners

Numerical Algorithms for Steady and Unsteady Multi-Disciplinary Simulation of Flight Vehicles, Phase II

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Armstrong Flight Research Center (AFRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Numerical Algorithms for Steady and Unsteady Multi-Disciplinary Simulation of Flight Vehicles, Phase II

Completed Technology Project (2005 - 2016)

Organizations Performing Work	Role	Туре	Location
Armstrong Flight Research Center(AFRC)	Lead Organization	NASA Center	Edwards, California
Intelligent Aerodynamics	Supporting Organization	Industry	Menlo Park, California

Primary U.S. Work Locations

California

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.3 Aeroelasticity

